カテゴリー別アーカイブ: 文字と式

正の数と負の数のたし算ひき算かけ算わり算

約束

数字の前についている+,-の印を→符号

(+8)+(-5)や(+8)(-5)など、二つのかっこにはさまれた+や-を→演算記号

数字を→絶対値

とよぶ。

(+5)や(+11)など、かっこの中の符号が+の数は、小学校で習った5や11とおなじこと。

+は右に進む印、計算の始まりは0。

同符号どうし(+と+どうし、-と-どうし)のたし算

✅(+8)+(+5)=+13

0から右に8進んで、右に進む。

これは、小学校で習ったたし算と同じ。

✅(-8)+(-5)=-13

0から左へ8進んで、左に5進む。

このことからわかること↓↓

同じ符号のたし算(+と+どうし、-と-どうし)は、絶対値をたして、計算結果に2つの数字に共通している符号をつける。

違う符号どうし(+と-どうし、-と+どうし)のたし算

✅(+8)+(-5)=+3

0から右に8進んで、左に5進む。

✅(-8)+(+5)=-3

0から左に8進んで、右に5進む。

このことからわかること↓↓

違う符号どうしのたし算は、絶対値の大きい数字から小さいほうの数字をひいて、大きい絶対値のほうの符号をつける。

同符号どうし(+と+どうし、-と-どうし)のひき算

✅(+8)-(+5)=+3

好きではないです」は「きらいです」と同じこと。

「好き」の反対は「きらい」、「ないです」の反対は「です」。

だから、違う違うと2回繰り返せば、最初に言ったことと同じになる。-①

これがわかれば、+5をひくことは、-5をたすことだとわかる。

だから、(+8)-(+5)は(+8)+(-5)と考えることができるので、

0から右に8進んで、5左に進むことだから答えは3。

また、こう考えてのいいと思います。

例えば、6÷3は6×$ \frac{ 1 }{ 3 }$と考えることもできると小学校で習いました。

これは、「÷3」は「×逆数」と同じだということですが、

これも、「÷の反対は×」、「3の反対は逆数の$ \frac{ 1 }{ 3 }$」で、2つとも反対にしたら、もとの式と同じ答えが出ます。

✅(-8)-(-5)=-3

①のように考えると、

-5をひくことは、+5をたすことだとわかる。

だから、(-8)-(-5)は(-8)+(+5)と同じこと。

0から左に8進んで、右に5進むので答えは-3。

ことなる符号どうし(+と-どうし、-と+どうし)のひき算

✅(+8)-(-5)=+13

-5をひくことは、+5をたすことと同じことだから、

(+8)-(-5)=(+8)+(+5)

0から右へ8進んで、更に右に5進むので、答えは+13。

✅(-8)-(+5)=-13

+5をひくことは、-5をたすことと同じことだから、

(-8)-(+5)=(-8)+(-5)

0から左へ8進んで、更に左に5進むので、答えは-13

(+1)+(+2)+(-3)-(+4)-(-5)=(+1)+(+2)+(-3)+(-4)+(+5)=1+2-3-4+5=+1

同じ符号どうしのかけ算と割り算は、絶対値の計算結果の前に+をつける。

右方向の速さを+、時間が進むこと(~秒後)を+で表すことにすると、左方向の速さは-、時間が戻ること(~秒前)は-で表すことができます。

1秒で2m歩く人が、+方向(→方向)に向かって歩いています。

歩き始めてから50mのところまで来ました。

あと5秒歩いたら(5秒後には)、歩き始めてから何mのところにいるでしょうか?

50m+(+2m)×(+5秒)=60m。ー①

それでは、この人は5秒前には歩き始めてから何mのところにいたのでしょうか?

5秒後を+5秒と表すことにすれば、5秒前は-5秒と表すことができるので、

50m+(2m)×(-5秒)と計算することができますね。

5秒前は50m地点から2×5=20mだけ手前にいたはずですから、30m地点にいたはずです。

そうすると、

50m+(2m)×(-5秒)=30mということがわかると思います。

ですから、(2m)×(-5秒)=-10mです。ー②

今度は、この人が、-方向(←方向)に歩き続けていると考えます。

左に歩き続けて、-50m地点につきました。

ここから、5秒後この人はどの地点にいるでしょうか。

-50m+(-2m)×(5秒)と計算することができます。

-50mから左に5秒歩き続けると、2×5=10だけ左に進みますから-60mのところにいるはずです。

ですから、-50m+(-2m)×(5秒)=-60mです。

すなわち、(-2m)×(5秒)=-10mです。ー③

②③から、+と-のかけ算(異符号どうしのかけ算)の積(かけ算の答え)は、どちらから先にかけても-になります

次に、この人は-50m地点から5秒前にはどこにいたでしょう?

5秒前は-50m地点から2m×5秒=10m右側にいたはずですから-40mのところにいます。

つまり、-50m+(-2m)×(-5秒)=-40です。

したがって、(-2m)×(-5秒)=+10です。④

①④から、+と+、-と-のかけ算(=同符号どうしのかけ算)の積(かけ算の答え)は+になります

違う符号どうしのかけ算と割り算は、絶対値の計算結果の前に-をつける。

割り算は割る数を逆数にしてかけ算にできますから、割り算もかけ算と同じに考えることができます。

正の数と負の数のたし算ひき算かけ算わり算、覚えるのはこれだけです。

最大公約数

最大公約数は、いくつかの数に共通する一番大きい約数(割り切れる数)です。

どのようにして約数を見つけるかお話しします。

数はいくつかの素数(1とその数の2つの数でしか割れない数、例えば2,3,5,7,11,13…..1は1しか割り切れる数がないので素数ではありません)のかけ算でつくられています。

例えば、6は2×3,18は$2×3^3(=2×3×3)$といった具合です。

ですから、数をこのように素数のかけ算の形に直して、共通している(どちらの数にも含まれている)数を探すと、それが最大公約数になります。

さきほどの例の場合は、2×3が6と18の中に共通して含まれているので、最小公倍数は2×3で6になります。

最大公約数を見つける時、実際には次のようにします。

\begin{array}{c|ccccc}
2 & 6 &,& 12 \\
\hline
3 & 3 &,& 6 \\
\hline
& 1 &,& 2 \
\end{array}

最大公約数を見つけたい二つの数字を並べて書いて、数字の下に割り算を筆算するときの割るの記号を逆さまに書き、左側に二つの数のどちらを割っても割り切れる素数の一番小さい数を書きます。

その次に、二つの数を左に書き入れた数で割った答えを二つの数字の下に書き入れます。

このことを割っていった二つの答えがこうこれ以上割れません!というまで続けていきます。

終わったら、最後に、左端に縦に並んだ数字を全部かけ算した答えが最大公約数です。